CLASS X (2019-20)
 MATHEMATICS STANDARD(041)
 SAMPLE PAPER-7

Time : 3 Hours
Maximum Marks : 80
General Instructions :
(i) All questions are compulsory.
(ii) The questions paper consists of 40 questions divided into 4 sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

Section A

Q.1-Q. 10 are multiple choice questions. Select the most appropriate answer from the given options.

1. The value of $(12)^{3^{x}}+(18)^{3^{x}}, x \in N$, end with the digit.
[1]
(a) 2
(b) 8
(c) 0
(d) Cannot be determined

Ans: (c) 0
For all $x \in N,(12)^{3^{x}}$ ends with either 8 or 2 and $(18)^{3^{x}}$ ends with either 2 or 8 .
If $(12)^{3^{x}}$ ends with 8 , then $(18)^{3^{x}}$ ends with 2.
If $(12)^{3^{x}}$ ends with 2 , then $(18)^{3^{x}}$ ends with 8.
Thus, $(12)^{3^{x}}+(18)^{3^{x}}$ ends with 0 only.
2. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$ respectively, then $g(x)$ is equal to
(a) $x^{2}+x+1$
(b) $x^{2}+1$
(c) $x^{2}-x+1$
(d) $x^{2}-1$

Ans: (c) $x^{2}-x+1$
Here, \quad Dividend $=x^{3}-3 x^{2}+x+2$
Quotient $=x-2$
Remainder $=-2 x+4$ and
Divisor $=g(x)$
Since,
dividend $=$ Divisor \times Quotient + Remainder
So, $\quad x^{3}-3 x^{2}+x+2=g(x) \times(x-2)+(-2 x+4)$ $g(x) \times(x-2)=x^{3}-3 x^{2}+x+2+2 x-4$
$g(x)=\frac{x^{3}-3 x^{2}+3 x-2}{x-2}$
$=\frac{(x-2)\left(x^{2}-x+1\right)}{(x-2)}$

$$
=x^{2}-x+1
$$

3. At present ages of a father and his son are in the ratio $7: 3$, and they will be in the ratio $2: 1$ after 10 years.

Then the present age of father (in years) is
(a) 42
(b) 56
(c) 70
(d) 77

Ans: (c) 70
Let the ages of father and son be $7 x, 3 x$
Hence, $\quad(7 x+10):(3 x+10)=2: 1$

$$
\begin{aligned}
& 7 x+10=6 x+20 \\
& 7 x-6 x=20-10
\end{aligned}
$$

$$
\text { or } \quad x=10
$$

Age of the father is 70 years.
4. Each root of $x^{2}-b x+c=0$ is decreased by 2. The resulting equation is $x^{2}-2 x+1=0$, then
(a) $b=6, c=9$
(b) $b=3, c=5$
(c) $b=2, c=-1$
(d) $b=-4, c=3$

Ans: (a) $b=6, c=9$

$$
\begin{aligned}
\alpha+\beta & =b \\
\alpha \beta & =c
\end{aligned}
$$

According to the question

$$
\begin{aligned}
(\alpha+\beta-4) & =b-4 \\
(\alpha-2)(\beta-2) & =\alpha \beta-2(\alpha+\beta)+4 \\
& =c-2 b+4 \\
\text { Now } \quad 2 & =b-4 \\
b & =6 \\
1 & =c-2 b+4 \\
1 & =c-2 \times 6+4=c-12+4 \\
c & =1+12-4=9
\end{aligned}
$$

5. What is the common difference of four terms in A.P. such that the ratio of the product of the first fourth term to that of the second and third term is $2: 3$ and the sum of all four terms is 20 ?
(a) 3
(b) 1
(c) 4
(d) 2

Ans: (d) 2
Take the four terms as $a-3 x, a-x, a+x, a+3 x$
The sum $=4 a=20$
$a=5$

$$
\text { Also, } \quad \begin{aligned}
3\left(a^{2}-(3 x)^{2}\right) & =2\left(a^{2}-x^{2}\right) \\
x & =1
\end{aligned}
$$

However, the common difference is $2 x$ and not x When,

$$
x=1, d=2 x=2
$$

6. The ratio in which the point $(2, y)$ divides the join of $(-4,3)$ and $(6,3)$. The value of y is
(a) $2: 3, y=3$
(b) $3: 2, y=4$
(c) $3: 2, y=3$
(d) $3: 2, y=2$

Ans: (c) $3: 2, y=3$
Let the required ratio be $k: 1$
Then, $\quad 2=\frac{6 k-4(1)}{k+1}$
or $\quad k=\frac{3}{2}$
The required ratio is $\frac{3}{2}: 1$ or $3: 2$
Also, $\quad y=\frac{3(3)+2(3)}{3+2}=3$
7. If the angle of depression of an object from a 75 m high tower is 30°, then the distance of the object from the tower is
(a) $25 \sqrt{3} \mathrm{~m}$
(b) $50 \sqrt{3} \mathrm{~m}$
(c) $75 \sqrt{3} \mathrm{~m}$
(d) 150 m

Ans: (c) $75 \sqrt{3} \mathrm{~m}$

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{A B}{O B} \\
\frac{1}{\sqrt{3}} & =\frac{75}{O B} \\
O B & =75 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

8. Ratio of volumes of two cones with same radii is [1]
(a) $h_{1}: h_{2}$
(b) $s_{1}: s_{2}$
(c) $r_{1}: r_{2}$
(d) None of these

Ans: (a) $h_{1}: h_{2}$

$$
\begin{aligned}
\frac{1}{3} \pi r_{1}^{2} h_{1} & : \frac{1}{3} \pi r_{2}^{2} h_{2} \\
\frac{1}{3} \pi r_{1}^{2} h_{1} & : \frac{1}{3} \pi r_{1}^{2} h_{2} \\
\quad h_{1} & : h_{2}
\end{aligned} \quad\left(r_{1}=r_{2}\right)
$$

9. In a frequency distribution, the mid value of a class is 10 and the width of the class is 6 . The lower limit of the class is
(a) 6
(b) 7
(c) 8
(d) 12

Ans: (b) 7
Let x be the upper limit and y be the lower limit.
Since the mid value of the class is 10 .

Hence, $\quad \frac{x+y}{2}=10$

$$
\begin{equation*}
x+y=20 \tag{1}
\end{equation*}
$$

and

By solving (1) and (2), we get $y=7$
Hence, lower limit of the class is 7 .
10. The probability of getting a number greater than 2 in throwing a dice is
(a) $2 / 3$
(b) $1 / 3$
(c) $4 / 3$
(d) $1 / 4$

Ans: (a) $2 / 3$
Required probability $=\frac{4}{6}=\frac{2}{3}$

(Q.11-Q.15) Fill in the blanks.

11. The ratio of the areas of two similar triangles is equal to the square of the ratio of their \qquad
Ans : corresponding sides
12. Point $(-4,6)$ divide the line segment joining the points $A(-6,10)$ and $B(3,-8)$ in the ratio \qquad [1]
Ans: 2: 7

or

All the points equidistant from two given points A and B lie on the \qquad of the line segment $A B$.
Ans: perpendicular bisector
13. It $\tan A=4 / 3$ then $\sin A$ \qquad
Ans : 4/5
14. A line that intersects a circle in one point only is called \qquad
Ans : tangent
15. Two points on a line segment are marked such that the three parts they make are equal then we say that the two points \qquad the line segment.
Ans : Trisect

(Q.16-Q.20) Answer the following

16. If the length of the ladder placed against a wall is twice the distance between the foot of the ladder and the wall. Find the angle made by the ladder with the horizontal.
Ans :
Let the distance between the foot of the ladder and the wall is x, then length of the ladder will be $2 x$. As per given in question we have drawn figure below.

In $\triangle A B C, \quad \angle B=90^{\circ}$

$$
\begin{aligned}
\cos A & =\frac{x}{2 x} \\
& =\frac{1}{2}=\cos 60^{\circ} \\
A & =60^{\circ}
\end{aligned}
$$

17. What is the perimeter of the sector with radius 10.5 cm and sector angle 60°.
Ans :
As per question the digram is shown below.

Perimeter of the sector,

$$
\begin{aligned}
p & =2 r+\frac{2 \pi r \theta}{360^{\circ}} \\
& =10.5 \times 2+2 \times \frac{22}{7} \times \frac{10.5 \times 60}{360} \\
& =21+11=32 \mathrm{~cm}
\end{aligned}
$$

18. Two cubes each of volume $8 \mathrm{~cm}^{3}$ are joined end to end, then what is the surface area of resulting cuboid. [1]
Ans :
Given
Side of the cube, $\quad a=\sqrt[3]{8}=2 \mathrm{~cm}$
Now the length of cuboid

Breadth,

$$
l=4 \mathrm{~cm}
$$

Height,

$$
b=2 \mathrm{~cm}
$$

Surface area of cuboid

$$
\begin{aligned}
& =2(l \times b+b \times h+h \times l) \\
& =2(4 \times 2+2 \times 2+2 \times 4) \\
& =2 \times 20=40 \mathrm{~cm}^{2}
\end{aligned}
$$

or
A solid metallic object is shaped like a double cone as shown in figure. Radius of base of both cones is same but their heights are different. If this cone is immersed in water, find the quantity of water it will displace.
Ans :
Volume of the upper cone $=\frac{1}{3} \pi r^{2} h$
Volume of the lower cone $=\frac{1}{3} \pi r^{2} H$
Total volume of both the cones $=\frac{1}{3} \pi r^{2} h+\frac{1}{3} \pi r^{2} H$

$$
=\frac{1}{3} \pi r^{2}(h+H)
$$

The quantity of water displaced will $\frac{1}{3} \pi r^{2}(h+H)$ cube units.
19. Find the following frequency distribution, find the
median class :

Cost of living index	$1400-$ 1500	$1550-$ 1700	$1700-$ 1850	$1850-$ 2000
Number of weeks	8	15	21	8

Ans :

C.I.	$1400-$ 1550	$1550-$ 1700	$1700-$ 1850	$150-2000$
f	8	15	21	8
c.f.	8	23	44	52

$\frac{\Sigma f}{2}=26 \Rightarrow$ Median class $=1700-1850$
20. Out of 200 bulbs in a box, 12 bulbs are defective. One bulb is taken out at random from the box. What is the probability that the drawn bulb is not defective?
Ans :
Total No. of cases $=200$

$$
\begin{aligned}
\text { Favourable cases } & =200-12 \\
& =188 \\
\text { Required probability } & =\frac{188}{200} \\
& =\frac{47}{50}
\end{aligned}
$$

Section B

21. Complete the following factor tree and find the composite number x

Ans :
We have

$$
\begin{aligned}
& z=\frac{371}{7}=53 \\
& y=1855 \times 3=5565 \\
& x=2 \times y=2 \times 5565=11130
\end{aligned}
$$

Thus complete factor three is as given below.

22. If $x=-\frac{1}{2}$, is a solution of the quadratic equation $3 x^{2}+2 k x-3=0$, find the value of k.
[2]

Ans :

We have $\quad 3 x^{2}+2 k x-3=0$
Putting $x=-\frac{1}{2}$, we get

$$
\begin{aligned}
3\left(-\frac{1}{2}\right)^{2}+2 k\left(-\frac{1}{2}\right)-3 & =0 \\
\frac{3}{4}-k-3 & =0 \\
k & =\frac{3}{4}-3 \\
& =\frac{3-12}{4}=\frac{-9}{4}
\end{aligned}
$$

Hence $k=\frac{-9}{4}$
23. The sides $A B$ and $A C$ and the perimeter P_{1} of $\triangle A B C$ are respectively three times the corresponding sides $D E$ and $D F$ and the parameter P_{2} of $\triangle D E F$. Are the two triangles similar? If yes, find $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}$

Ans :

As per given condition we have drawn the figure below.

In $\triangle A B C$ and $\triangle D E F$,
and

$$
\begin{aligned}
A B & =3 D E \\
A C & =3 D F \\
\frac{A B}{D E} & =3 ; \frac{A C}{D F}=3
\end{aligned}
$$

Since $P_{1}=3 P_{2}, B C=3 E F$
Thus

$$
\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}=3
$$

$\triangle A B C \sim \triangle D E F$

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\left(\frac{A B}{D E}\right)^{2}=(3)^{2}=9
$$

or
In the given figure, $\angle A=\angle B$ and $A D=B E$. Show that $D E \| A B$.

Ans:
In $\triangle C A B$, we have

$$
\begin{equation*}
\angle A=\angle B \tag{1}
\end{equation*}
$$

By isoscales triangle property, we have

$$
A C=C B
$$

But, we have been given

$$
\begin{equation*}
A D=B E \tag{2}
\end{equation*}
$$

Dividing equation (2) by (1) we get,

$$
\frac{C D}{A D}=\frac{C E}{B E}
$$

By converse of $B P T$,

$$
D E \| A B .
$$

Hence Proved
24. Two slips of paper marked 5 and 10 are put in a box and three slips marked $1,3,5$ are in another. One slip from each box is drawn.
(a) What is the probability that both show odd number?
(b) What is the probability of getting one odd number and one even number?

Ans :

One box contains $(5,10)$
Other box contains $(1,3,5)$
(a) For I box probability for odd number $\frac{1}{2}$

Fro II box probability for odd number $=\frac{3}{3}=1$ Required probability $=\frac{1}{2} \times 1=\frac{1}{2}$
(b) P (one odd and one even)

$$
\begin{aligned}
&=P(\text { one odd from box I) } \\
& \times P(\text { one even from box II }) \\
&+P(\text { one even from box I) } \\
& \times P(\text { one odd from box II }) \\
&=\frac{1}{2} \times \frac{0}{3}+\frac{1}{2} \times \frac{3}{3} \\
&=0+\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

25. The data regarding marks obtained by 48 students of a class in a class test is given below. Calculate the

By SSS criterion we have
modal marks of students.

Marks obtained	$0-5$	$5-$ 10	$10-$ 15	$15-$ 20	$20-$ 25	$25-$ 30	$30-$ 35	$35-$ 40	$40-$ 45	$45-$ 50
Number of students	1	0	2	0	0	10	25	7	2	1

Ans :

Modal class is $30-35, l=30, f_{1}=25 f_{0}=10, f_{2}=7$, $h=5$

$$
\begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
\Rightarrow \quad \text { Mode } & =30+\frac{25-10}{50-10-7} \times 5 \\
& =30+2.27 \text { or } 32.27 \text { approx. }
\end{aligned}
$$

or
The following table gives the life time in days of 100 bulbs :

Life time in days	Less than 50	Less than 100	Less than 150	Less than 200	Less than 250	Less than 300
Number of Bulbs	8	23	55	81	93	100
Change the above distribution.						

Ans :
Frequency distribution table.

Class -Interval	Frequency
$0-50$	8
$50-100$	15
$100-150$	32
$150-200$	26
$200-250$	12
$250-300$	7
Total	100

26. The angle of elevation of the top of a chimney from the foot of a tower is 60° and the angle of depression of the foot of the chimney from the top of the tower is 30°. If the height of tower is 40 m , find the height of smoke emitting chimney. According to pollution control norms, the minimum height of a smoke emitting chimney should be 100 m . What value is discussed in this problem?

Ans :

Given $A B=40 \mathrm{~m}$ be the height of the tower and $C D$ be the height of smoking chimney.
In right $\triangle A B C$,

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{A B}{B C} \Rightarrow \frac{1}{\sqrt{3}}=\frac{40}{B C} \\
B C & =40 \sqrt{3}
\end{aligned}
$$

Again, in right $\triangle D C B$,

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{D C}{B C} \\
\sqrt{3} & =\frac{D C}{40 \sqrt{3}} \\
D C & =120 \mathrm{~m}
\end{aligned}
$$

The height of chimney is 100 m ,
Which is greater than the ideal height 100 m of a small emitting chimney.

Section C

27. Find the HCF of 180, 252 and 324 by Euclid's Division algorithm.

Ans :

$$
\text { We have } \quad \begin{aligned}
324 & =252 \times 1+72 \\
252 & =72 \times 3+36 \\
72 & =36 \times 2+0
\end{aligned}
$$

Thus $\operatorname{HCF}(324,252)=36$
Now $\quad 180=36 \times 5+0$
Thus $\operatorname{HCF}(36,180)=36$
Thus HCF of 180,252 , and 324 is 36 .
Hence required number $=999999-63=999936$

or

144 cartons of Coke cans and 90 cartons of Pepsi cans are to be stacked in a canteen. If each stack is of the same height and if it equal contain cartons of the same drink, what would be the greatest number of cartons each stack would have?

Ans :

The required answer will be HCF of 144 and 90 .

$$
\begin{aligned}
144 & =2^{4} \times 3^{2} \\
90 & =2 \times 3^{2} \times 5 \\
\operatorname{HCF}(144,90) & =2 \times 3^{2}=18
\end{aligned}
$$

Thus each stack would have 18 cartons.
28. Solve for x :
$\frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2 x+3}{x-2} ; x \neq 1,-2,2$
Ans :
We have

$$
\frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2 x+3}{x-2}
$$

$$
\frac{x^{2}+3 x+2+x^{2}-3 x+2}{x^{2}+x-2}=\frac{4 x-8-2 x-3}{x-2}
$$

$$
\begin{aligned}
\frac{2 x^{2}+4}{x^{2}+x-2} & =\frac{2 x-11}{x-2} \\
\left(2 x^{2}+4\right)(x-2) & =(2 x-11)\left(x^{2}+x-2\right) \\
5 x^{2}+19 x-30 & =0 \\
(5 x-6)(x+5) & =0 \\
x & =-5, \frac{6}{5}
\end{aligned}
$$

29. The ninth term of an A.P. is equal to seven times the second term and twelfth term exceeds five times the third term by 2. Find the first term and the common difference.
Ans :
Let the first term be a, common difference be d and nth term be a_{n}.
Now

$$
\text { Now } \begin{align*}
a_{9} & =7 a_{2} \\
a+8 d & =7(a+d) \\
a+8 d & =7 a+7 d \\
\text { and } \quad 6 a+d & =0 \tag{1}\\
a_{12} & =5 a_{3}+2 \\
a+11 d & =5(a+2 d)+2 \\
a+11 d & =5 a+10 d+2 \\
-4 a+d & =2 \tag{2}
\end{align*}
$$

Subtracting (2) from (1), we get

$$
\begin{aligned}
-2 a & =-2 \\
a & =1
\end{aligned}
$$

Substituting this value of a in (1) we get

$$
\begin{aligned}
-6+d & =0 \\
d & =6
\end{aligned}
$$

Hence first term is 1 and common difference is 6 .

or

Find the $20^{\text {th }}$ term of an A.P. whose $3^{\text {rd }}$ term is 7 and the seventh term exceeds three times the $3^{\text {rd }}$ term by 2. Also find its $n^{\text {th }}$ term $\left(a_{n}\right)$.

Ans :
Let the first term be a, common difference be d and nth term be a_{n}.
We have

$$
\begin{align*}
a_{3} & =a+2 d=7 \tag{1}\\
a_{7} & =3 a_{3}+2 \\
a+6 d & =3 \times 7+2=23 \tag{2}
\end{align*}
$$

Solving (1) and (2) we have

$$
\begin{aligned}
4 d & =16 \Rightarrow d=4 \\
a+8 & =7 \Rightarrow a=-1 \\
a_{20} & =a+19 d=-1+19 \times 4=75 \\
a_{1} & =a+(n-1) d=-1+4 n-4 \\
& =4 n-5 .
\end{aligned}
$$

Hence $n^{\text {th }}$ term is $4 n-5$
30. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
Ans :
Let $A B$ be a diameter of a given circle and let $C D$ and $R F$ be the tangents drawn to the circle at A and B respectively as shown in figure below.

Here $A B \perp C D$ and $A B \perp E F$
Thus $\quad \angle C A B=90^{\circ}$ and $\angle A B F=90^{\circ}$
Hence $\quad \angle C A B=\angle A B F$
and $\quad \angle A B E=\angle B A D$
Hence $\angle C A B$ and $\angle A B F$ also $\angle A B E$ and $\angle B A D$ are alternate interior angles.

$$
C D \| E F
$$

Hence Proved
31. Read the following, understand the mathematical idea expressed in it answer the questions that follow: 1,4,9,16, \qquad are the square of the counting numbers. The remainders got by dividing the square numbers with natural numbers have a cyclic property. For example, the remainders on dividing these numbers by 4 are tabulated here.

Number	1	4	9	16	25	-	-	-
Remainder	1	0	1	0	1	-	-	-
On dividing by 4 perfect squares leave only 0 and								

(a) Which are the possible remainders on dividing any number with $4 ?$
(b) Which are the numbers we would not get on dividing a perfect square by 4 ?
(c) What is the remainder that leaves on dividing the terms of the arithmetic sequence $2,5,8,11, \ldots \ldots$. by 4 ?
Ans :
(a) Any number can be form of $(4 d+r)$

Where $r=0,1,2$ and 3
When any number divided by 4 remainders are 0 , 1,2 , and 3 .
(b) A perfect square number divided by 4 leave the remainder 0 and 1
2 and 3 are not get as remainder when perfect square number divided by 4 .
(c) $2,5,8,11 \ldots \ldots$
remainders are $2,1,0,3 \ldots \ldots$
32. The angles of depression of the top and bottom of a 50 m high building from the top of a tower are 45° and 60° respectively. Find the height of the tower and the horizontal distance between the tower and the building. (Use $\sqrt{3}=1.73$)
Ans :
As per given in question we have drawn figure below.

We have

$$
\begin{align*}
\tan 45^{\circ} & =\frac{h-50}{x} \\
x & =h-50 \\
\tan 60^{\circ} & =\frac{h}{x} \\
\sqrt{3} & =\frac{h}{x} \\
x & =\frac{h}{\sqrt{3}} \tag{2}
\end{align*}
$$

and

From (1) and (2) we have

$$
\begin{aligned}
h-50 & =\frac{h}{\sqrt{3}} \\
\sqrt{3} h-50 \sqrt{3} & =h \\
\sqrt{3} h-h & =50 \sqrt{3} \\
h(\sqrt{3}-1) & =50 \sqrt{3} \\
h & =\frac{50 \sqrt{3}}{\sqrt{3}-1}=\frac{50(3+\sqrt{3})}{2} \\
h= & 25(3+\sqrt{3})=75+25 \sqrt{3} \\
& =118.30 \mathrm{~m} \\
& \text { or }
\end{aligned}
$$

An electric pole is 10 m high. A steel wire tied to top of the pole is affixed at a point on the ground to keep the pole up right. If the wire makes an angle of 45° with the horizontal through the foot of the pole, find the length of the wire.
[Use $\sqrt{2}=1.414$]

Ans :

Let $O A$ be the electric pole and B be the point on the ground to fix the pole. Let $B A$ be x.
As per given in question we have drawn figure below.

In $\triangle A B O$, we have

$$
\begin{aligned}
\sin 45^{\circ} & =\frac{A O}{A B} \\
\frac{1}{\sqrt{2}} & =\frac{10}{x}
\end{aligned}
$$

To Get 20 Solved Paper Free PDF by whatsapp add +918905629969 in your class Group

$$
\begin{aligned}
& x ^ { 2 } - 2 x + k \longdiv { x ^ { 2 } - 4 x + (8 - k) } \\
& \frac{x^{4}-2 x^{3}+k x^{2}}{-4 x^{3}+(16-k) x^{2}-25 x+10} \\
& -4 x^{3}+8 x^{2}-4 k x \\
& (8-k) x^{2}-(25-4 k) x+10 \\
& \frac{(8-k) x-(16-2 k) x+\left(8 k-k^{2}\right)}{(2 k-9) x+\left(10-8 k+k^{2}\right)}
\end{aligned}
$$

Given, remainder $=x+a$
Comparing the multiples of x

$$
\begin{aligned}
(2 k-9) x & =1 \times x \\
2 k-9 & =1 \\
k & =\frac{10}{2}=5
\end{aligned}
$$

Substituting this value of k into other portion of remainder, we get
and $\quad a=10-8 k+k^{2}=10-40+25$

$$
=-5
$$

or

Obtain all other zeroes of the polynomial $9 x^{4}-6 x^{3}-35 x^{2}+24 x-4$, if two of its zeroes are 2 and -2 .

Ans :

As 2 and -2 are the zeroes of $9 x^{4}-6 x^{3}-35 x^{2}+24 x-4$, So $(x-2)$ and $(x+2)$ are its two factors and

$$
(x-2)(x+2)=x^{2}-4
$$

Dividing $9 x^{4}-6 x^{3}-35 x^{2}+24 x-4$ by $x^{2}-4$

$$
\begin{array}{r}
x ^ { 2 } - 4 \longdiv { 9 x ^ { 4 } - 6 x ^ { 3 } - 3 5 x ^ { 2 } + 2 4 x - 4 } \\
\frac{9 x^{4}-36 x^{2}}{-6 x^{3}+x^{2}+24 x-4} \\
\frac{-6 x^{3}+24 x}{x^{2}-4} \\
\frac{x^{2}-4}{0}
\end{array}
$$

Factorising this quotient

$$
\begin{aligned}
& =\left[9 x^{2}-3 x-3 x+1\right] \\
& =[3 x(3 x-1)-1(3 x-1)] \\
& =[(3 x-1)(3 x-1)] \\
& =(3 x-1)(3 x-1)
\end{aligned}
$$

Hence, other two zeroes are $\frac{1}{3}, \frac{1}{3}$.
36. Solve the following pair of equations :
$\frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2$ and $\frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1$
Ans :
We have

$$
\frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1
$$

Substitute $\frac{1}{\sqrt{x}}=X$ and $\frac{1}{\sqrt{y}}=Y$

$$
\begin{align*}
2 X+3 Y & =2 \tag{1}\\
4 X-9 Y & =-1 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 3 , and adding in (2) we get

Thus

$$
10 X=5 \Rightarrow X=\frac{5}{10}=\frac{1}{2}
$$

$$
\frac{1}{\sqrt{x}}=\frac{1}{2} \Rightarrow x=4
$$

Putting the value of X in equation (1), we get

$$
2 \times \frac{1}{2}+3 y=2
$$

$$
\begin{aligned}
3 Y & =2-1 \\
Y & =\frac{1}{3} \\
Y & =\frac{1}{3} \Rightarrow \frac{1}{\sqrt{y}}=\frac{1}{3} \Rightarrow y=9
\end{aligned}
$$

Now
Hence $x=4, y=9$.
37. $\triangle P Q R$ is right angled at $Q, Q X \perp P R, X Y \perp R Q$ and $X Z \perp P Q$ are drawn. Prove that $X Z^{2}=P Z \times Z Q$. [4]

Ans :

We have redrawn the given figure as below.

It may be easily seen that $R Q \perp P Q$
and $X Z \perp P Q$ or $X Z \| Y Q$
Similarly $\quad X Y \| \mathrm{ZQ}$
Thus $X Y Q Z$ is a rectangle.
In $\triangle X Z Q, \quad \angle 1+\angle 2=90^{\circ}$
and in $\triangle P Z X, \quad \angle 3+\angle 4=90^{\circ}$
$X Q \perp P R$ or, $\quad \angle 2+\angle 3=90^{\circ}$
From eq. (1) and (3), $\quad \angle 1=\angle 3$
From eq. (2) and (3), $\quad \angle 2=\angle 4$
Due to $A A$ similarity

$$
\begin{aligned}
\triangle P Z X & \sim \Delta X Z Q \\
\frac{P Z}{X Z} & =\frac{X Z}{Z Q} \\
X Z^{2} & =P Z \times Z Q \quad \text { Hence proved }
\end{aligned}
$$

or
If the area of two similar triangles are equal, prove that they are congruent.

Ans :

As per given condition we have drawn the figure below.

We have

$$
\triangle A B C \sim \triangle P Q R
$$

and $\quad \operatorname{ar} \triangle A B C=\operatorname{ar} \triangle P Q R$
Since $\triangle A B C \sim \triangle P Q R$, we have

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{R P^{2}} \tag{1}
\end{equation*}
$$

Since $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle P Q R)$ we have

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=1
$$

From equation (1), we get

$$
\begin{aligned}
\frac{A B^{2}}{P Q^{2}} & =\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{R P^{2}}=1 \\
\frac{A B}{P Q} & =\frac{B C}{Q R}=\frac{C A}{R P}=1 \\
A B & =P Q \\
B C & =Q R \\
C A & =R A
\end{aligned}
$$

and
By SSS similarity we have

$$
\triangle A B C \cong \triangle P Q R
$$

38. Evaluate :
$\tan ^{2} 30^{\circ} \sin 30^{\circ}+\cos 60^{\circ} \sin ^{2} 90^{\circ} \tan ^{2} 60^{\circ}-2 \tan 45^{\circ} \cos ^{2} 0^{\circ} \sin 90^{\circ}$

Ans :

$\tan ^{2} 30^{\circ} \sin 30^{\circ}+\cos 60^{\circ} \sin ^{2} 90^{\circ} \tan ^{2} 60^{\circ}-2 \tan 45^{\circ} \cos ^{2} 0^{\circ} \sin 90^{\circ}$
$=\left(\frac{1}{\sqrt{3}}\right)^{2} \times \frac{1}{2}+\frac{1}{2} \times(1)^{2} \times(\sqrt{3})^{2}-2 \times 1 \times 1^{2} \times 1$
$=\frac{1}{3} \times \frac{1}{2}+\frac{1}{2} \times 1 \times 3 \times-2 \times 1 \times 1 \times 1$
$=\frac{1}{6}+\frac{3}{2}-2=\frac{1+9-12}{6}=-\frac{2}{6}=-\frac{1}{3}$
or
If $\sqrt{3} \cot ^{2} \theta-4 \cot \theta+\sqrt{3}=0$, then find the value of $\cot ^{2} \theta+\tan ^{2} \theta$.
Ans :
We have $\quad \sqrt{3} \cot ^{2} \theta-4 \cot \theta+\sqrt{3}=0$
Let $\cot \theta=x$, then we have

$$
\begin{aligned}
\sqrt{3} x^{2}-4 x+\sqrt{3} & =0 \\
\sqrt{3} x^{2}-3 x-x+\sqrt{3} & =0 \\
\sqrt{3} x(x-\sqrt{3})-1(x-\sqrt{3}) & =0 \\
(x-\sqrt{3})(\sqrt{3 x}-1) & =0
\end{aligned}
$$

Thus

$$
x=\sqrt{3} \text { or } \frac{1}{\sqrt{3}}
$$

or

$$
\cot \theta=\sqrt{3} \text { or } \cot \theta=\frac{1}{\sqrt{3}}
$$

Therefore

$$
\theta=30^{\circ} \text { or } \theta=60^{\circ}
$$

If $\theta=30^{\circ}$, then

$$
\begin{aligned}
\cot ^{2} 30^{\circ}+\tan ^{2} 30^{\circ} & =(\sqrt{3})^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2} \\
& =3+\frac{1}{3}=\frac{10}{3}
\end{aligned}
$$

If $\theta=60^{\circ}$, then

$$
\begin{aligned}
\cot ^{2} 60^{\circ}+\tan ^{2} 60^{\circ} & =\left(\frac{1}{\sqrt{3}}\right)^{2}+(\sqrt{3})^{2} \\
& =\frac{1}{3}+3=\frac{10}{3} .
\end{aligned}
$$

39. Find the coordinates of the point which divide the line segment joining $A(2,-3)$ and $B(-4,-6)$ into three equal parts.
Ans :
Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ trisect the line joining $A(3,-2)$ and $B(-3,-4)$.

As per question, line diagram is shown below.
P divides $A B$ in the ratio of $1: 2$ and Q divides $A B$ in the ratio 2:1.
By section formula

$$
\begin{aligned}
x_{1} & =\frac{m x_{2}+n x_{1}}{1+2} \text { and } y=\frac{m y_{2}+n y_{1}}{m+n} \\
P\left(x_{1}, y_{1}\right) & =\left(\frac{1(-4)+2(2)}{2+1}, \frac{2(-6)+1(-3)}{2+1}\right) \\
& =\left(\frac{-4+4}{3}, \frac{-6-(-6)}{3}\right) \\
& =(0,-4) \\
Q\left(x_{2}, y_{2}\right) & =\left(\frac{2(-4)+1(2)}{2+1}, \frac{2(-6)+1(-3)}{2+1}\right) \\
& =\left(\frac{-8+2}{3},-\frac{12+(-3)}{3}\right)=(-2,-5)
\end{aligned}
$$

40. In the figure, O is the centre of circle such that diameter $A B=13 \mathrm{~cm}$ and $A C=12 \mathrm{~cm} . B C$ is joined. Find the area of the shaded region. $(\pi=3.14) \quad[4]$

Ans:

We redraw the given figure as below.

Radius of semi circle $A C B=\frac{13}{2} \mathrm{~cm}$

$$
\begin{aligned}
\text { Area of semicircle } & =\frac{\pi}{2} r^{2}=\frac{3.14}{2} \times \frac{13}{2} \times \frac{13}{2} \\
& =\frac{3.14 \times 169}{8}=\frac{530.66}{8} \mathrm{~cm}^{2}
\end{aligned}
$$

Semicircle subtend 90° at circle, thus $\angle A C B=90^{\circ}$
In $\triangle A B C$
$A C^{2}+B C^{2}=A B^{2}$

$$
12^{2}+B C^{2}=169
$$

$$
B C^{2}=(160-144)=25
$$

$$
B C=5 \mathrm{~cm}
$$

Also area

$$
\Delta=\frac{1}{2} \times \text { Base } \times \text { Hight }
$$

Area of $\triangle A B C$

$$
\Delta=\frac{1}{2} \times A C \times B C
$$

$$
=\frac{1}{2} \times 12 \times 5
$$

$$
=30 \mathrm{~cm}^{2}
$$

Area of shaded region $=\frac{530.66}{8}-30$

$$
\begin{aligned}
& =(66.3325-30) \mathrm{cm}^{2} \\
& =36.3325 \mathrm{~cm}^{2}
\end{aligned}
$$

WWW.CBSE.ONLINE

Download unsolved version of this paper from
 www.cbse.online

This sample paper has been released by website www.cbse.online for the benefits of the students. This paper has been prepared by subject expert with the consultation of many other expert and paper is fully based on the exam pattern for 2019-2020. Please note that website www.cbse.online is not affiliated to Central board of Secondary Education, Delhi in any manner. The aim of website is to provide free study material to the students.

