CLASS X (2019-20)
 MATHEMATICS STANDARD(041)
 SAMPLE PAPER-8

Time : 3 Hours
Maximum Marks : 80
General Instructions :
(i) All questions are compulsory.
(ii) The questions paper consists of 40 questions divided into 4 sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

Section A

Q.1-Q. 10 are multiple choice questions. Select the most appropriate answer from the given options.

1. The values of x and y is the given figure are

(a) 7, 13
(b) 13,7
(c) 9,12
(d) 12,9

Ans: (a) 7, 13
Given number is 10001 . Then, the factor tree of 1001 is given as below

$$
1001=7 \times 11 \times 13
$$

By comparing with given factor tree, we get

$$
x=7, y=13
$$

2. If the sum of the zeroes of the polynomial $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-3 \mathrm{kx}^{2}+4 \mathrm{x}-5$ is 6 , then the value of k is $[1]$
(a) 2
(b) -2
(c) 4
(d) -4

Ans: (c) 4
Sum of the zeroes $=\frac{3 \mathrm{k}}{2}$

$$
\begin{aligned}
& 6=\frac{3 \mathrm{k}}{2} \\
& \mathrm{k}=\frac{12}{3}=4
\end{aligned}
$$

3. If $3 x+4 y: x+2 y=9: 4$, then $3 x+5 y: 3 x-y$ is equal to
(a) $4: 1$
(b) $1: 4$
(c) $7: 1$
(d) $1: 7$

Ans: (c) $7: 1$

$$
\begin{aligned}
\frac{3 x+4 y}{x+2 y} & =\frac{9}{4} \\
\text { Hence, } & 12 x+16 y \\
\text { or } & =9 x+18 y \\
3 x & =2 y \\
x & =\frac{2}{3} y
\end{aligned}
$$

Substitute $x=\frac{2}{3} y$ in the required expression.

$$
\frac{3 \frac{2}{3} y+5 y}{3 \frac{2}{3} y-y}=\frac{7 y}{y}=\frac{7}{1}=7: 1
$$

4. The quadratic equation $2 x^{2}-\sqrt{5} x+1=0$ has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots

Ans : (c) no real roots
Given equation is,

$$
2 x^{2}-\sqrt{5 x}+1=0
$$

On comparing with $\quad a x^{2}+b x+c=0$,
we get

$$
a=2, b=-\sqrt{5} \text { and } c=1
$$

Discriminant,

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-\sqrt{5})^{2}-4 \times(2) \times(1) \\
& =5-8=-3<0
\end{aligned}
$$

Since, discriminant is negative, therefore quadratic equation $2 x^{2}-\sqrt{5} x+1=0$ has no real roots i.e., imaginary roots.
5. There are 60 terms is an A.P. of which the first term is 8 and the last term is 185 . The $31^{\text {st }}$ term is
[1]
(a) 56
(b) 94
(c) 85
(d) 98

Ans: (d) 98
Let d be the common difference;
Then $60^{\text {th }}$ term, $=8+59 d=185$

$$
\begin{aligned}
59 d & =177 \\
d & =3 \\
a_{n} & =a+(n-1) d \\
\text { Hence, } \quad 31^{\text {th }} \text { term } & =8+30 \times 3=98
\end{aligned}
$$

6. The point on the X-axis which if equidistant from the points $A(-2,3)$ and $B(5,4)$ is
(a) $(0,2)$
(b) $(2,0)$
(c) $(3,0)$
(d) $(-2,0)$

Ans: (b) $(2,0)$
Let $P(x, 0)$ be a point on X-axis such that,

$$
\begin{aligned}
A P & =B P \\
A P^{2} & =B P^{2} \\
(x+2)^{2}+(0-3)^{2} & =(x-5)^{2}+(0+4)^{2} \\
x^{2}+4 x+4+9 & =x^{2}-10 x+25+16 \\
14 x & =28 \\
x & =2
\end{aligned}
$$

Hence, required point $=(2,0)$
7. The height of a tree, if it casts a shadow 15 m long on the level of ground, when the angle of elevation of the sun is 45°, is
(a) 10 m
(b) 14 m
(c) 8 m
(d) 15 m

Ans: (d) 15 m
Let $B C$ be the tree of height h meter.
Let $A B$ be the shadow of tree.

In $\triangle A B C$

$$
\begin{align*}
, C B & =90^{\circ} \\
\frac{B C}{B A} & =\tan 45^{\circ} \\
B C & =A B=15 \mathrm{~m} \tag{1}
\end{align*}
$$

8. Volume of a spherical shell is given by
(a) $4 \pi\left(R^{2}-r^{2}\right)$
(b) $\pi\left(R^{3}-r^{3}\right)$
(c) $4 \pi\left(R^{3}-r^{3}\right)$
(d) $\frac{4}{3} \pi\left(R^{3}-r^{3}\right)$

Ans: (d) $\frac{4}{3} \pi\left(R^{3}-r^{3}\right)$

$$
\begin{aligned}
\text { Volume of spherical shell } & =\frac{4}{3} \pi R^{3}-\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi\left(R^{3}-r^{3}\right)
\end{aligned}
$$

9. The mean of discrete observations y_{1}, y_{2} \qquad y_{n} is given by
Ans:
(a) $\frac{\sum_{i=1}^{n} y_{i}}{n}$
(b) $\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} i}$
(c) $\frac{\sum_{i=1}^{n} y_{i} f_{i}}{n}$
(d) $\frac{\sum_{i=1}^{n} y_{i} f_{i}}{\sum_{i=1}^{n} f_{i}}$

Ans: (a) $\frac{\sum_{i=1}^{n} y_{i}}{n}$
10. A single letter is selected at random from the word "PROBABILITY". The probability that the selected letter is a vowel is
(a) $\frac{2}{11}$
(b) $\frac{3}{11}$
(c) $\frac{4}{11}$
(d) 0

Ans: (c) $\frac{4}{11}$
Required probability $=\frac{1+2+1}{11}=\frac{4}{11}$

(Q.11-Q.15) Fill in the blanks.

11. Two polygons of the same number of sides are similar, if all the corresponding angles are \qquad

Ans: equal
12. Points $(1,5),(2,3)$ and $(-2,-11)$ are \qquad
Ans : Non-collinear

or

The value of the expression $\sqrt{x^{2}+y^{2}}$ is the distance of the point $P(x, y)$ from the \qquad
Ans: Origin
13. The value of $\sin A$ or $\cos A$ never exceeds \qquad
Ans: 1
14. Tangent is perpendicular to the \qquad through the point of contact.
Ans : radius
15. Two circles are drawn with same centre then the
\qquad circle have bigger radius.
Ans: Outer

(Q.16-Q.20) Answer the following

16. In the given figure, $A B$ is a 6 m high pole and $D C$ is a ladder inclined at an angle of 60° to the horizontal and reaches up to point D of pole. If $A D=2.54 \mathrm{~m}$, find the length of ladder. (use $\sqrt{3}=1.73$)

Ans :
We have

$$
\begin{aligned}
& A D=2.54 \mathrm{~m} \\
& D B=6-2.54=3.46 \mathrm{~m}
\end{aligned}
$$

In $\triangle B C D, \quad \angle B=90^{\circ}$
$\sin 60^{\circ}=\frac{B D}{D C}$

$$
\begin{aligned}
\frac{\sqrt{3}}{2} & =\frac{3.46}{D C} \\
D C & =\frac{3.46 \times 2}{\sqrt{3}}=\frac{3.46}{1.73}=4
\end{aligned}
$$

Thus length of ladder is 4 m .
17. If the circumferences of two concentric circles forming a ring are 88 cm and 66 cm respectively. Find the width of the ring.
Ans :
Circumference of the outer circle $2 \pi r_{1}=88 \mathrm{~cm}$

$$
r_{1}=\frac{88 \times 7}{2 \times 22}=14 \mathrm{~cm}
$$

Circumference of the outer circle $2 \pi r_{2}=66 \mathrm{~cm}$

$$
r_{2}=\frac{66 \times 7}{2 \times 22}=\frac{21}{2} \mathrm{~cm}=10.5 \mathrm{~cm}
$$

Width of the ring

$$
r_{1}-r_{2}=14-10.5 \mathrm{~cm}=3.5 \mathrm{~cm}
$$

18. Volume of two spheres are in the ratio $64: 27$, find the ratio of their surface areas.
Ans :

$$
\begin{aligned}
\frac{\text { Volume of } \mathrm{I}^{\mathrm{st}} \text { sphere }}{\text { Volume of } \mathrm{II}^{\text {nd }}} & =\frac{64}{27} \\
\frac{\frac{4}{3} \pi r_{1}^{3}}{\frac{4}{3} \pi r_{2}^{3}} & =\frac{64}{27} \\
\frac{r_{1}^{3}}{r_{2}^{3}} & =\frac{4^{3}}{3^{3}} \\
\frac{r_{1}}{r_{2}} & =\frac{4}{3}
\end{aligned}
$$

Ratio of their surface areas

$$
\begin{aligned}
\frac{4 A_{1} / A_{2} \pi r_{1}^{2}}{4 \pi r_{2}^{2}} & =\left(\frac{r_{1}}{r_{2}}\right)^{2} \\
& =\left(\frac{4}{3}\right)^{2} \\
& =\frac{16}{9}
\end{aligned}
$$

or

Find the volume (in cm^{3}) of the largest right circular cone that can be cut off from a cube of edge 4.2 cm .
Ans :
Given,
Edge of the cube $=4.2 \mathrm{~cm}$.
Height of the cone, $h=4.2 \mathrm{~cm}$.
Radius of the cone, $r=\frac{4.2}{2}=2.1 \mathrm{~cm}$.

$$
\begin{aligned}
\text { Volume of the cone } & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \times \frac{22}{7} \times(2.1)^{2} \times 4.2 \\
& =19.4 \mathrm{~cm}^{3}
\end{aligned}
$$

19. Following distribution gives cumulative frequencies of 'more than type' :

M a r k s obtained	Marks obtained $\mathbf{5}$	M o r e than of equal to $\mathbf{1 0}$	M o r e than or equal to $\mathbf{1 5}$	M o r e than of equal to $\mathbf{2 0}$
Number of student (cummula- tive frequency)	30	23	8	2

Change the above data to a continuous grouped frequency distribution.
Ans :

C.I	$5-10$	$10-15$	$15-20$	$20-25$
f	7	15	6	2

20. A card is drawn at random from a well shuffled pack of 52 cards. Find the probability of getting neither a red card nor a queen.
Ans :
Given, \quad Total number of cards $=52$
Number of red cards $=26$
Number of queens which are not red $=2$
\therefore Cards which are neither red nor queen

$$
\begin{aligned}
& =52-[26+2] \\
& =24 \\
\therefore \quad \text { Required Probability } & =\frac{24}{52} \\
& =\frac{6}{13}
\end{aligned}
$$

Section B

21. Find the HCF and LCM of 90 and 144 by the method of prime factorization.
Ans :
We have

$$
\begin{aligned}
90 & =9 \times 10 \\
& =2 \times 3^{2} \times 5 \\
144 & =16 \times 9 \\
& =2^{4} \times 3^{2} \\
\mathrm{HCF} & =2 \times 3^{2}=18 \\
\mathrm{LCM} & =2^{4} \times 3^{2} \times 5=720
\end{aligned}
$$

and
22. Find the roots of the quadratic equation $\sqrt{3} x^{2}-2 x-\sqrt{3}$.
Ans :
We have

$$
\begin{array}{r}
\sqrt{3} x^{2}-2 x-\sqrt{3}=0 \\
\sqrt{3} x^{2}-3 x+x-\sqrt{3}=0 \\
\sqrt{3} x(x-\sqrt{3})+1(x-\sqrt{3})=0 \\
(x-\sqrt{3})(\sqrt{3}+1)=0 \\
x=\sqrt{3}, \frac{-1}{\sqrt{3}}
\end{array}
$$

Thus
23. Given $\triangle A B C \sim \triangle D E F$, find $\frac{\Delta A B C}{\triangle D E F}$

Ans :

In $\triangle D E F$, we have

$$
\begin{aligned}
D E & =\sqrt{(13)^{2}-(12)^{2}} \\
& =\sqrt{169-144}=\sqrt{25}=5
\end{aligned}
$$

Thus

$$
\frac{\operatorname{ar\Delta ABC}}{\operatorname{ar\Delta DEF}}=\left(\frac{A B}{D E}\right)^{2}=\left(\frac{3}{5}\right)^{2}=\frac{9}{25}
$$

In the given figure, if $A B C D$ is a trapezium in which $A B\|C D\| E F$, then prove that $\frac{A E}{E D}=\frac{B F}{F C}$

Ans :

We draw, $A C$ intersecting $E F$ at G as shown below.

In $\triangle C A B, G F \| A B$, thus by BPT we have

$$
\begin{equation*}
\frac{A G}{C G}=\frac{B F}{F C} \tag{1}
\end{equation*}
$$

In $\triangle A D C, E G \| D C$, thus by BPT we have

$$
\begin{equation*}
\frac{A E}{E D}=\frac{A G}{C G} \tag{2}
\end{equation*}
$$

From equations (1) and (2),

$$
\frac{A E}{E D}=\frac{B F}{F C}
$$

Hence Proved.
24. There are two small boxes A and B. In A, there are 9 white beads and 8 black beads. In B, there are 7 white and 8 black beads. We want to take a bead from a box.
(a) What is the probability of getting a white bead from a box?
(b) A white bead and a black bead are added to box B and then a bead is taken from it. What is the probability of getting a white bead from it ?
Ans :
Total number of beads in box $A=9 W+8 B=17$
Total number of beads in box $B=7 W+8 B=15$
(a) $P($ white bead from box $A)=\frac{9}{17}$
$P($ white bead from box $B)=\frac{7}{15}$
$\therefore \quad P$ (a white bead from each box)

$$
=\frac{9}{17} \times \frac{7}{15}=\frac{21}{85}
$$

(b) When a white bead and a black bead are added to box B, then
No. of white beads in box $B=7 W+1 W=8 W$
No. of black beads in box $B=8 B+1 B=9 B$
\therefore Total number of beads in box $B=8 W+9 B=17$
Hence, $P($ white bead from box $B)=\frac{8}{17}$
25. Find the value of λ, if the mode of the following data is $20:$
$15,20,25,18,13,15,25,15,18,17,20,25,20, \lambda, 18$. [2]
Ans :
Writing the data as discrete frequency distribution, we get

x_{i}	f_{i}
13	1
15	3
17	1
18	3
20	3
λ	1
25	3

For 20 to be mode of the frequency distribution, $\lambda=20$.
or
Find the unknown values in the following table:

Class Interval	Frequency	Cumulative Frequency
$0-10$	5	5
$10-20$	7	x_{1}
$20-30$	x_{2}	18
$30-40$	5	x_{3}
$40-50$	x_{4}	30

Ans:

$$
\begin{aligned}
& x_{1}=5+7=12 \\
& x_{2}=18-12=6 \\
& x_{3}=18+5=23 \\
& x_{4}=30-23=7
\end{aligned}
$$

and
26. Two ships are approaching a light-house from opposite
directions. The angle of depression of two ships from top of the light-house are 30° and 45°. If the distance between two ships is 100 m , find the height of lighthouse.
Ans :
Let $A D$ be the height (h meter) of the light-house and $B C$ is the distance between the ships.

Given, $\quad B C=100 \mathrm{~m}$
In right $\triangle A D C$,

$$
\begin{align*}
\tan 45^{\circ} & =\frac{A D}{D C} \\
1 & =\frac{h}{D C} \\
D C & =h \tag{1}
\end{align*}
$$

In right $\triangle A D B$,

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{A D}{B D} \\
\frac{1}{\sqrt{3}} & =\frac{h}{100-D C}=\frac{h}{100-h} \\
100-h & =h \sqrt{3} \\
100 & =h+h \sqrt{3}=h(1+\sqrt{3}) \\
h & =\frac{100}{1+\sqrt{3}}=\frac{100}{2.732}=36.60
\end{aligned}
$$

$\therefore \quad$ Height of tower $=36.60 \mathrm{~m}$

Section C

27. Use Euclid division lemma to show that the square of any positive integer cannot be of the form $5 m+2$ or $5 m+3$ for some integer m.
Ans :
Let a be any positive integer, then by Euclid's division algorithm a can be written as

$$
a=b q+r, 0 \leq r<b \text { and } q \in \omega
$$

Take $b=5$, then $0 \leq r<5$ because $0 \leq r<b$
Thus $\quad a=5 q, 5 q+1,5 q+2,5 q+3$ and $5 q+4$,
Now $\quad a^{2}=(5 q)^{2}=25 q^{2}=5\left(5 q^{2}\right)=5 m$
$a^{2}=(5 q+1)^{2}=25 q^{2}+10 q+1=5 m+1$
$a^{2}=(5 q+2)^{2}=25 q^{2}+20 q+4=5 m+4$
Similarly $a^{2}=(5 q+3)^{2}=5 m+4$
and $\quad a^{2}=(5 q+4)^{2}=5 m+1$
Thus square of any positive integer cannot be of the form $5 m+2$ or $5 m+3$.
or
Three bells toll at intervals of $9,12,15$ minutes respectively. If they start tolling together, after what time will they next toll together?

Ans :

The required answer is the LCM of 9,12 , and 15 minutes.
Finding prime factor of given number we have,

$$
\begin{aligned}
9 & =3 \times 3=3^{2} \\
12 & =2 \times 2 \times 3=2^{2} \times 3 \\
15 & =3 \times 5 \\
\operatorname{LCM}(9,12,15) & =2^{2} \times 3^{2} \times 5 \\
& =150 \text { minutes }
\end{aligned}
$$

The bells will toll next together after 180 minutes.
28. Solve for $x: \frac{1}{x}+\frac{2}{2 x-3}=\frac{1}{x-2}, x \neq 0, \frac{2}{3}, 2$.

Ans :
We have

$$
\begin{aligned}
\frac{1}{x}+\frac{2}{2 x-3} & =\frac{1}{x-2} \\
\frac{2 x-3+2 x}{x(2 x-3)} & =\frac{1}{x-2} \\
\frac{4 x-3}{x(2 x-3)} & =\frac{1}{x-2} \\
(x-2)(4 x-3) & =2 x^{2}-3 x \\
4 x^{2}-11 x+6 & =2 x^{2}-3 x \\
2 x^{2}-8 x+6 & =0 \\
x^{2}-4 x+3 & =0 \\
(x-1)(x-3) & =0
\end{aligned}
$$

Thus $x=1,3$
29. Determine an A.P. whose third term is 9 and when fifth term is subtracted from $8^{\text {th }}$ term, we get 6 . [3]
Ans :
Let the first term be a, common difference be d and nth term be a_{n}.
We have $\quad a_{3}=9$

$$
\begin{equation*}
a+2 d=9 \tag{1}
\end{equation*}
$$

and $\quad a_{8}-a_{5}=6$
$(a+7 d)-(a+4 d)=6$
$3 d=6$

$$
d=2
$$

Substituting this value of d in equation (1), we get

$$
\begin{aligned}
a+2(2) & =9 \\
a & =5
\end{aligned}
$$

So, A.P. is $5,7,9,11, \ldots$
or
If $7^{\text {th }}$ term of an A.P. is $\frac{1}{9}$ and $9^{\text {th }}$ term is $\frac{1}{7}$, find $63^{r d}$ term.

Ans :

Let the first term be a, common difference be d and nth term be a_{n}.

$$
\begin{align*}
& \text { We have } \quad \begin{aligned}
a_{7} & =\frac{1}{9} \Rightarrow a+6 d=\frac{1}{9} \\
a_{9} & =\frac{1}{7} \Rightarrow a+8 d=\frac{1}{7}
\end{aligned}
\end{align*}
$$

Subtracting equation (1) from (2) we get

$$
2 d=\frac{1}{7}-\frac{1}{9}=\frac{2}{63}=\frac{1}{63}
$$

Substituting the value of d in (2) we get

$$
\begin{aligned}
& \qquad \begin{aligned}
a+8 \times \frac{1}{63} & =\frac{1}{7} \\
a & =\frac{1}{7}-\frac{8}{63}=\frac{9-8}{63}=\frac{1}{63} \\
\text { Thus } \quad & =a+(63-1) d \\
& =\frac{1}{63}+62 \times \frac{1}{63}=\frac{1+62}{63} \\
& =\frac{63}{63}=1
\end{aligned}
\end{aligned}
$$

Hence, $a_{63}=1$
30. In $\triangle A B D, A B=A C$. If the interior circle of $\triangle A B C$ touches the sides $A B, B C$ and $C A$ at D, E and F respectively. Prove that E bisects $B C$.
Ans:
As per question we draw figure shown below.

Since length of tangents from an external point to a circle are equal,
At A,
$A F=A D$
At B
$B E=B D$
At C
$C E=C F$
Now we have $A B=A C$

$$
\begin{array}{rlr}
A D+D B & =A F+F C \\
B D & =F C & (A D=A F) \\
B E & =E C \quad(B D=B E, C E=C F)
\end{array}
$$

Thus E bisects $B C$.
31. Roja, Renu and Reena are three friends. They decided to sweep a circular park near their homes. They divided the park into three parts by two equal chords $A B$ and $A C$ for convenience.
(i) Prove that the centre of the park lies on the angle bisector of $\angle B A C$.
(ii) Which mathematical concept is used in the above problem?
Ans :
(i) Given : A circle $C(O, r)$ and chord $A B=\operatorname{chord} A C$. $A D$ is bisector of $\angle C A B$.

To prove : Centre O lies on the bisector of $\angle B A C$.
Construction: Join $B C$, meeting bisector $A D$ of $\angle B A C$, at M.

Proof: In triangles $B A M$ and $C A M$,

$$
\begin{align*}
A B & =A C \tag{given}\\
\angle B A M & =\angle C A M \tag{given}\\
A M & =A M \\
\Delta B A M & \cong \Delta C A M \tag{SAS}\\
B M & =C M
\end{align*}
$$

and
and $\quad \angle B M A=\angle C M A$

$$
\begin{aligned}
\text { As } \angle B M A+\angle C M A & =180^{\circ} \\
\angle B M A & =\angle C M A=90^{\circ}
\end{aligned}
$$

(common)
$A M$ is the perpendicular bisector of the chord $B C$.
$A M$ passes through the centre O.
[Perpendicular bisector of chord of a circle passes through the centre of the circle]
Hence, the centre of the park lies on the angle bisector of $\angle B A C$.
32. An aeroplane, when flying at a height of 4000 m from the ground passes vertically above another aeroplane at an instant when the angles of elevation of the two planes from the same point on the ground are 60° and 45° respectively. Find the vertical distance between the aeroplanes at that instant. (Use $\sqrt{3}=1.73$) [3]
Ans :
Let the height first plane be $A B=4000 \mathrm{~m}$ and the height of second plane be $B C=x \mathrm{~m}$. As per given in question we have drawn figure below.

Here $\angle B D C=45^{\circ}$ and $\angle A D B=60^{\circ}$
In $\triangle C B D, \quad \frac{x}{y}=\tan 45^{\circ}=1 \Rightarrow x=y$
and in $\triangle A B D, \frac{4000}{y}=\tan 60^{\circ}=\sqrt{3}$

$$
\begin{aligned}
y & =\frac{4000 \sqrt{3}}{3} \\
& =2306.67 \mathrm{~m}
\end{aligned}
$$

Thus vertical distance between two,

$$
\begin{aligned}
4000-y= & 4000-2306.67 \\
= & 1693.33 \mathrm{~m} \\
& \quad \text { or }
\end{aligned}
$$

Two men on either side of a 75 m high building and in line with base of building observe the angles of elevation of the top of the building as 30° and 60°. find the distance between the two men. (Use $\sqrt{3}=1.73$)

Ans :

Let $A B$ be the building and the two men are at P and Q . As per given in question we have drawn figure below.

In $\triangle A B P, \quad \tan 30^{\circ}=\frac{A B}{B P}$

$$
\begin{aligned}
& \frac{1}{\sqrt{3}}=\frac{75}{B P} \\
& B P=75 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

In $\triangle A B Q, \quad \tan 60^{\circ}=\frac{A B}{B Q}$

$$
\begin{aligned}
& \sqrt{3}=\frac{75}{B Q} \\
& B Q=\frac{75}{\sqrt{3}}=25 \sqrt{3}
\end{aligned}
$$

Distance between the two men,

$$
\begin{aligned}
P Q & =B P+B Q=75 \sqrt{3}+25 \sqrt{3} \\
& =100 \sqrt{3}=100 \times 1.73=173
\end{aligned}
$$

33. A tent is in the shape of cylinder surmounted by a conical top of same diameter. If the height and diameter of cylindrical part are 2.1 m and 3 m respectively and the slant height of conical part is 2.8 m , find the cost of canvas needed to make the tent if the canvas is available at the rate of Rs. 500 per square meter. Use $\pi=\frac{22}{7}$

Ans :

Given,

$$
\text { Height of cylinder }=2.1 \mathrm{~m}
$$

Radius of cylinder $=$ radius of cone $=\frac{3}{2} \mathrm{~m}$
Slant height of cone $=2.8 \mathrm{~m}$
Surface area of tent

$$
\begin{aligned}
& =C . S . A \text { of cone }+C . S . A \text { of cylinder. } \\
& =\pi r l+2 \pi r h=\pi r(l+2 h)
\end{aligned}
$$

Area of canvas required will be surface area of tent.
Thus

$$
\begin{aligned}
\pi r(l+2 h) & =\frac{22}{7} \times \frac{3}{2}(2.8+2 \times 2.1) \\
& =\frac{33}{7} \times 7=33 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Total Cost } & =33 \times 500 \\
& =16,500
\end{aligned}
$$

34. A circular sheet of radius 18 centimetre is divided into 9 equal sectors.
(a) Find the measure of the central angle of a sector.
(b) Find the slant height of a cone which can be made by a sector.
(c) Find the lateral surface area of the cone thus formed.

Ans :

(a)

$$
\text { Radius }=18 \mathrm{~cm}
$$

$$
\text { Central angle of the circle }=360^{\circ}
$$

$$
\text { Central angle of the sector }=40^{\circ}
$$

(b)

$$
\begin{aligned}
\text { Slant height } & =18 \mathrm{~cm} \\
\frac{x}{360} & =\frac{r}{4} \\
\frac{40}{360} & =\frac{r}{18} \\
r & =2 \mathrm{~cm}
\end{aligned}
$$

(c) Curved surface area of cone $=\pi r l$

$$
\pi \times 2 \times 18=36 \pi \mathrm{~cm}^{2}
$$

Section D

35. Find the other zeroes of the polynomial $x^{4}-5 x^{3}+2 x^{2}+10 x-8$ if it is given that two zeroes are $-\sqrt{2}$ and $\sqrt{2}$.

Ans :

We have two zeroes $\sqrt{2}$ and $-\sqrt{2}$.
Two factors are $(x+\sqrt{2})$ and $(x-\sqrt{2})$
$g(x)=(x+\sqrt{2})(x-\sqrt{2})=x^{2}-2$ is a factor of the given polynomial

$$
\begin{array}{r}
x^{2}-5 x+4 \\
\frac{x^{2}-2 x^{3}+2 x^{2}+10 x-8}{x^{4}-2 x^{2}} \\
\begin{array}{r}
-5 x^{3}+4 x^{2}+10 x-8 \\
\frac{-5 x^{3}-10 x}{4 x^{2}-8} \\
\frac{4 x^{2}-8}{0}
\end{array}
\end{array}
$$

Quotient $=x^{2}-5 x+4=(x-4)(x-1)$
Hence other zeroes are 4 and 1 .
or
Find all the zeros of the polynomial $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$ it two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
Ans:

$$
\begin{array}{r}
3 x ^ { 2 } - 5 \longdiv { 3 x ^ { 2 } + 2 x + 1 } \\
\frac{3 x^{4}-5 x^{3}-2 x^{2}-10 x-5}{6 x^{3}+3 x^{2}-10 x-5} \\
\frac{-6 x^{3}-10 x}{3 x^{2}-5} \\
\frac{3 x^{2}-5}{0}
\end{array}
$$

Since $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are two zeroes of the given polynomial.
So, $\left(x-\sqrt{\frac{5}{3}}\right),\left(x+\sqrt{\frac{5}{3}}\right)$ will be its two factors

$$
\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=\frac{1}{3}\left(3 x^{2}-5\right)
$$

is a factor of given polynomial
Now, dividing it by $3 x^{2}-5$.

$$
x^{2}+2 x+1=(x+1)^{2}=(x+1)(x+1)
$$

two other zeroes $=-1$ and -1
Hence all the zeroes of given polynomial

$$
=\sqrt{\frac{5}{3}}, \sqrt{\frac{5}{3}},-1 \text { and }-1
$$

36. Solve the following pairs of linear equations by elimination method.
(a) $x+y=5$ and $2 x-3 y=4$
(b) $3 x+4 y=10$ and $2 x-2 y=2$
(c) $3 x-5 y-4=0$ and $9 x=2 y+7$

Ans :
(a) We have, $x+y=5$
and $\quad 2 x-3 y=4$
Multiplying equation (1) by 3 and adding in (2) we have
$3(x+y)+(2 x-3 y)=3 \times 5+4$
or,

$$
3 x+3 y+2 x-3 y=15+4
$$

$$
5 x=19 \Rightarrow x=\frac{19}{5}
$$

Substituting $x=\frac{19}{5}$ in equation (1),

$$
\begin{aligned}
\frac{19}{5}+y & =5 \\
y & =5-\frac{19}{5}=\frac{25-19}{5}=\frac{6}{5}
\end{aligned}
$$

Hence, $x=\frac{19}{5}$ and $y=\frac{6}{5}$
(b) We have,

$$
\begin{equation*}
3 x+4 y=10 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 x-2 y=2 \tag{2}
\end{equation*}
$$

Multiplying equation (2) by 2 and adding in (1),

$$
(3 x+4 y)+2(2 x-2 y)=10+2 \times 2
$$

or, $\quad 3 x+4 y+4 x-4 y=10+4$
or, $\quad 7 x=14$ $y=1$
Hence, $x=2$ and $y=1$.
(c)

We have, $\quad 3 x-5 y=4$
and

$$
\begin{equation*}
9 x=2 y+7 \tag{1}
\end{equation*}
$$

Multiplying equation (1) by 3 and rewriting equation
(2) we have

$$
\begin{align*}
9 x-15 y & =12 \tag{3}\\
9 x-2 y & =7 \tag{4}
\end{align*}
$$

Subtracting equation (4) from equation (3),

$$
\begin{aligned}
-13 y & =5 \\
y & =-\frac{5}{13}
\end{aligned}
$$

Substituting value of y in equation (1),

$$
\begin{aligned}
3 x-5\left(\frac{-5}{13}\right) & =4 \\
3 x & =4-\frac{25}{13} \\
x & =\frac{27}{13 \times 3}=\frac{9}{13}
\end{aligned}
$$

Hence $x=\frac{9}{13}$ and $y=-\frac{5}{13}$
37. In $\triangle A B C$, the mid-points of sides $B C, C A$ and $A B$ are D, E and F respectively. Find ratio of $\operatorname{ar}(\triangle D E F)$ to $\operatorname{ar}(\triangle A B C$.)

Ans :

As per given condition we have drawn the figure below. Here F, E and D are the mid-points of $A B, A C$ and $B C$ respectively.

Hence, $F E\|B C, D E\| A B$ and $D F \| A C$
By mid-point theorem,
If

$$
D E \| B A \text { then } D E \| B F
$$

and if $\quad F E \| B C$ then $F E \| B D$
Therefore $F E D B$ is a parallelogram in which $D F$ is diagonal and a diagonal of Parallelogram divides it into two equal Areas.
Hence $\quad \operatorname{ar}(\triangle B D F)=\operatorname{ar}(\triangle D E F)$
Similarly $\operatorname{ar}(\triangle C D E)=\operatorname{ar}(\triangle D E F)$

$$
\begin{align*}
(\triangle A F E) & =\operatorname{ar}(\triangle D E F) \tag{3}\\
(\triangle D E F) & =\operatorname{ar}(\triangle D E F)
\end{align*}
$$

Adding equation (1), (2), (3) and (4), we have
$\operatorname{ar}(\triangle B D F)+\operatorname{ar}(\triangle C D E)+\operatorname{ar}(\triangle A F E)+\operatorname{ar}(\triangle D E F)$

$$
\begin{aligned}
& =4 \operatorname{ar}(\triangle D E F) \\
\operatorname{ar}(\triangle A B C) & =4 \operatorname{ar}(\triangle D E F) \\
\frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle A B C)} & =\frac{1}{4} \\
& \quad \text { or }
\end{aligned}
$$

In $\triangle A B C, A D$ is the median to $B C$ and in $\triangle P Q R, P M$ is the median to $Q R$. If $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A D}{P M}$. Prove that $\triangle A B C \sim \triangle P Q R$.
Prove that $\triangle A B C \sim \triangle P Q R$.
Ans :
As per given condition we have drawn the figure below.

In $\triangle A B C, A D$ is the median, therefore

$$
B C=2 B D
$$

and in $\triangle P Q R, P M$ is the median,

$$
Q R=2 Q M
$$

Given,

$$
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{B C}{Q R}
$$

or,

$$
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{2 B D}{2 Q M}
$$

In triangles $A B D$ and $P Q M$,

$$
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{B D}{Q M}
$$

By SSS similarity we have

$$
\triangle A B D \sim \triangle P Q M
$$

By CPST we have

$$
\angle B=\angle Q
$$

In $\triangle A B C$ and $\triangle P Q R$,

$$
\frac{A B}{P Q}=\frac{B C}{Q R}
$$

By SAS similarity we have

$$
\angle B=\angle Q
$$

Thus

$$
\triangle A B C \sim \triangle P Q R .
$$

Hence Proved.
38. Given that $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$, find the values of $\tan 75^{\circ}$ and $\tan 90^{\circ}$ by taking
suitable values of A and B.

Ans :

We have $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$

$$
\begin{align*}
\tan 75^{\circ} & =\tan \left(45^{\circ}+30^{\circ}\right) \tag{i}\\
& =\frac{\tan 45^{\circ}+\tan 30^{\circ}}{1 \cdot \tan 45^{\circ} \cdot \tan 30^{\circ}} \\
& =\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}+1}{\sqrt{3}-1} \\
& =\frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} \\
& =\frac{3+2 \sqrt{3}+1}{(\sqrt{3})^{2}-(1)^{2}}=\frac{4+2 \sqrt{3}}{2}
\end{align*}
$$

Hence $\tan 75^{\circ}=2+\sqrt{3}$
(ii)

$$
\begin{aligned}
\tan 90^{\circ} & =\tan \left(60^{\circ}+30^{\circ}\right) \\
& =\frac{\tan 60^{\circ}+\tan 30^{\circ}}{1-\tan 60^{\circ} \tan 30^{\circ}} \\
& =\frac{\sqrt{3}+\frac{1}{\sqrt{3}}}{1-\sqrt{3} \times \frac{1}{\sqrt{3}}}=\frac{\frac{3+1}{\sqrt{3}}}{0}
\end{aligned}
$$

Hence, $\tan 90^{\circ}=\infty$

or

In an acute angled triangle $A B C$, if $\sin (A+B-C)=\frac{1}{2}$ and $\cos (B+C-A)=\frac{1}{\sqrt{2}}$, find $\angle A, \angle B$ and $\angle C$.
Ans :
We have

$$
\sin (A+B-C)=\frac{1}{2}=\sin 30^{\circ}
$$

or,

$$
\begin{equation*}
A+B-C=30^{\circ} \tag{1}
\end{equation*}
$$

or,

$$
\begin{align*}
\cos (B+C-A) & =\frac{1}{\sqrt{2}}=\cos 45^{\circ} \\
B+C-A & =45^{\circ} \tag{2}
\end{align*}
$$

Adding equation (1) and (2), we get

$$
\begin{aligned}
2 B & =75^{\circ} \\
\text { or, } \quad B & =37.5^{\circ}
\end{aligned}
$$

Now subtracting equation (2) from equation (1) we get,

$$
\begin{align*}
2(A-C) & =-15^{\circ} \\
\text { or, } \quad A-C & =7.5^{\circ} \tag{3}\\
\text { Now } \quad A+B+C & =180^{\circ} \\
A+B+C & =180^{\circ} \\
A+C & =180^{\circ}-37.5^{\circ}=142.5^{\circ} \tag{4}
\end{align*}
$$

Adding equation (3) and (4), we have

$$
2 A=135^{\circ}
$$

or, $\quad A=67.5^{\circ}$
and,

$$
C=75^{\circ}
$$

Hence, $\angle A=67.5^{\circ}, \angle B=37.5^{\circ}, \angle C=75^{\circ}$
39. Find the area of a quadrilateral $A B C D$, the coordinates of whose vertices are $A(-3,2), B(5,4)$, $C(7,-6)$ and $D(-5,-4)$.
Ans :

As per question the quadrilateral is shown below.

Area of triangle $A B D$

$$
\begin{aligned}
\Delta_{A B D} & =\frac{1}{2}|-3(8)+5(-6)+-5(2-4)| \\
& =22 \text { sq. units }
\end{aligned}
$$

Area of triangle $B C D$

$$
\begin{aligned}
\Delta_{B C D} & =\frac{1}{2}|5(-2)+7(-8)-5(10)| \\
& =58 \text { sq. units } \\
\text { Area }_{A B C D} & =\Delta_{A B D}+\Delta_{B C D} \\
& =22+58=80 \text { sq. units }
\end{aligned}
$$

40. Four equal circles are described at the four corners of a square so that each touches two of the others. The shaded area enclosed between the circle is $\frac{24}{7} \mathrm{~cm} 2$. Find the radius of each circle.
Ans :
As per question statement the figure is shown below.

Let $r \mathrm{~cm}$ be the radius of each circle.
Area of square - Area of 4 sectors $=\frac{24}{7} \mathrm{~cm}^{2}$

$$
\begin{aligned}
(2 r)^{2}-4\left(\frac{90}{360^{\circ}} \times \pi r^{2}\right) & =\frac{24}{7} \\
4 r^{2}-\frac{22}{7} r^{2} & =\frac{24}{7} \\
\frac{28 r^{2}-22 r^{2}}{7} & =\frac{24}{7} \\
6 r^{2} & =24 \\
r^{2} & =4 \\
r & = \pm 2
\end{aligned}
$$

Thus radius of each circle is 2 cm .
WWW.CBSE.ONLINE

Download unsolved version of this paper from www.cbse.online

This sample paper has been released by website www.cbse.online for the benefits of the students. This paper has been prepared by subject expert with the consultation of many other expert and paper is fully based on the exam pattern for 2019-2020. Please note that website www.cbse.online is not affiliated to Central board of Secondary Education, Delhi in any manner. The aim of website is to provide free study material to the students.

